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Abstract

We conducted a numerical study to determine the influence of pulsatile laminar flow and heating protocol on temperature distribution
in a single blood vessel and tumor tissue receiving hyperthermia treatment. We utilized both a physiological resting waveform at time-
averaged Reynolds number of 50 and 300 and a sinusoidal waveform in this investigation. The arterial wall was modeled using the vol-
ume-averaged porous media equations. Discretization of the transport equations was achieved using a finite element scheme based on the
Galerkin method of weighted residuals. We validated our numerical model by comparing it with previously published results in litera-
ture. Our results indicate that the choice of waveform significantly influences the findings concerning temperature distribution and heat
transfer rate during hyperthermia treatment. A comprehensive analysis of the influence of blood velocity pulsations and blood vessel size
on temperature uniformity of tissues undergoing hyperthermia treatment is presented in detail. The results of the present investigation
illustrate that large vessels have a profound effect on the heat transfer characteristics in tissues receiving hyperthermia treatment. The
results of this work may enhance current understanding of the factors that determine the effect of hyperthermia treatment on tumor
tissues.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Hyperthermia treatment has been demonstrated as effec-
tive during cancer therapy in recent years. Its objective is to
raise the temperature of pathological tissues above
cytotoxic temperatures (41–45 �C) without overexposing
healthy tissues [1–4]. Although difficult to achieve and
maintain in a clinical setting, uniform temperature distribu-
tions, are significant during hyperthermia treatment [5]
since the use of temperatures above 55 �C may directly
destroy tissues through thermal coagulation, as was illus-
trated by Beacco et al. [6]. Temperature variations, which
may be associated with the mechanisms of heat removal
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by the body and may sometimes be caused by inadequate
heating technologies, are often heterogeneous, and can lead
to defectively heated tissues, hot spots and potential
burning.

Temperature distribution within tissues primarily
depends on tissue thermal conductivity, the heating
source’s power deposition pattern characteristics, and heat
transfer resulting from blood flow [7]. An important source
of temperature non-uniformity is the presence of large ves-
sels entering the heated volume and carrying blood at a
lower systemic temperature (37 �C). Blood flow has a pro-
found influence on the efficiency of thermal therapy treat-
ment. The design of delivered power devices and
numerous theoretical, experimental, and clinical studies
have demonstrated that large blood vessels may produce
localized cooling regions within heated tissues during
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Nomenclature

d blood vessel diameter
K permeability
L blood vessel length
p blood pressure
r radial distance
R1, R2, and R3 residuals (errors)
Rem time-averaged Reynolds number ð¼d�um=tÞ
T temperature
ur radial velocity
uz axial velocity
�um time-averaged inlet mean velocity
v velocity vector
z longitudinal coordinate

Greek symbols

a thermal diffusivity of blood
q blood density

l fluid dynamic viscosity
u interpolation function for velocity
e porosity
w interpolation function for pressure
# interpolation function for temperature
s time
m fluid kinematic viscosity (=l/q)

Subscripts

f fluid
e effective properties

Other

h i the local volume average of a quantity
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hyperthermia treatment [8–11]. Kolios et al. [12] investi-
gated the effect of large blood vessel in heated tissues and
showed that the dissipation of heat from heated tissues
was carried out by convection through blood flow and also
by conduction process. In another study, Kolios et al. [13]
demonstrated that blood flow through large blood vessels
plays an important role in determining temperature profiles
of heated tissues even when the treatment time is within 3–
20 s. Furthermore, Crezee and Lagendijk [5] conducted a
numerical study on the impact of large vessels on the tem-
perature uniformity during hyperthermia treatment assum-
ing steady-state condition; this study revealed that the
presence of a large vessel may result in non-uniform tem-
perature resulting in possible under dosage. All of the
aforementioned studies focused on determining temporal
variations of temperature in tissue while assuming a
steady-state blood flow whereas, in the human use of
hyperthermia, blood flow is periodically oscillating.

Several studies have also been conducted to analyze the
effect of oscillatory flow on the velocity profile without
examining its effect on heat transfer [14–17]. However, later
studies, like the early work by Siegel and Perlmutter [18],
addressed the dependence of heat transfer characteristics
on pulsatile flow in a channel. Cho and Hyun [19] assumed
a sinusoidal variation of the velocity at the pipe inlet in a
numerical study of pulsatile flow and heat transfer charac-
teristics within a pipe. Kim et al. [20] analyzed numerically
the heat transfer characteristics of fully developed pulsatile
flow in a channel, assuming a sinusoidal variation of the
velocity at the inlet of the channel. The limitation of these
studies was that they considered dimensions and parame-
ters that are not applicable to human vasculature.

Recently, Shih et al. [21] investigated the cooling effects
of thermally significant blood vessels in perfused tissue dur-
ing thermal therapy using Pennes bioheat transfer equa-
tion. Their results showed that the cooling effect of blood
vessels was more obvious for longer heating. Craciunescu
and Clegg [22] studied numerically the effect of blood
velocity pulsations on temperature distribution and heat
transfer within rigid blood vessels and assumed the
entrance velocity to be a simple sinusoidal function of time.
The authors assumed a sinusoidal velocity waveform at the
inlet of the blood vessel and neglected the effect of arterial
wall on the blood temperature distribution and wall tem-
perature variation. Also, they only focused on the heat
transfer between blood flow and vessel wall, not consider-
ing heat exchange between the tissue and blood vessel in
whole. Their results illustrated that pulsating axial velocity
produces pulsating temperature variation and a reversal of
flow within the aorta and large vessels.

Therefore, the purpose of the present study is to com-
pare the physiological flow and heat transfer characteristics
in a single blood vessel with those obtained under the
assumption of a sinusoidal velocity waveform while consid-
ering the influence of blood vessel size and the arterial wall
on temperature uniformity of tissues receiving hyperther-
mia treatment. We also investigated the impact of different
heating protocols on the transient temperature distribution
in both blood vessel and the arterial wall.
2. Mathematical formulation

Consider unsteady, axi-symmetric incompressible New-
tonian blood flow through a rigid vessel of length L, thick-
ness t, and radius R. The geometry of the problem and the
coordinate system are shown in Fig. 1. The blood flow and
temperature in the artery lumen is described by continuity,
Navier–Stokes, and energy equations using cylindrical
polar coordinates as follows:



Fig. 1. Schematic of the physical and coordinate system.

Fig. 2. Time variation of the inflow mean velocity for physiological and
sinusoidal pulsatile flows.

Table 1
Physiological parameters used in the numerical simulation [35]

Layer Parameters Value

Lumen Density, q (kg/m3) 1050
Dynamic viscosity, l
(kg/m s)

0.00345

Conductivity, k (W/m K) 0.51
Specific heat, c (kJ/kg K) 3.78

Endothelium Permeability, K (m2) 4.32 � 10�15

Porosity, e 0.0005

Intima Permeability, K (m2) 2 � 10�10

Porosity, e 0.983

IEL (internal elastic lamina) Permeability, K (m2) 4.39 � 10�13

Porosity, e 0.002

Media Permeability, K (m2) 2 � 10�12

Porosity, e 0.258
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where uz and ur are the axial and radial velocity, respec-
tively, p the pressure, T the temperature, a the thermal
diffusivity of blood, and m is the kinematic viscosity of
blood. The arterial wall is modeled as macroscopically
homogeneous porous media [23,24]. Therefore, the vol-
ume-averaged governing equations are (Vafai and Tien
[25,26], Alazmi and Vafai [27], Khanafer et al. [28], Nield
[29], Ingham and Pop [30], Pop and Ingham [31]):

r � hvi ¼ 0 ð5Þ
qf

e
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where h i denotes the local volume average of a quantity
(Vafai and Tien [25,26]), v the velocity vector, f the super-
script that refers to the local volume average inside the
fluid, K the permeability, ae the effective thermal diffusivity,
and e is the porosity. The effective thermal properties are
related to fluid and solid matrix properties by the following
relations:

ðqcpÞe ¼ eðqcpÞf þ ð1� eÞðqcpÞs ð8Þ
ke ¼ ekf þ ð1� eÞks ð9Þ

where the subscript s refers to solid matrix properties (i.e.
arterial wall) and f refers to blood properties. Eqs. (1)–(7)
require suitable boundary conditions. The following
boundary conditions are applied: fully developed pulsating
velocity at the inlet to the arterial lumen is specified as:

uzðr; tÞ ¼ 2�umðtÞ 1� r
R

� �2
� �

ð10Þ
The time-averaged Reynolds number is defined as:

Rem ¼
q�umd
lf

ð11Þ

where �um is the time-averaged inlet mean velocity (Fig. 2)
and lf is the viscosity of the blood. A waveform corre-
sponding to a resting person was used for the time depen-
dent inlet mean velocity, �umðtÞ, as reported by Mills et al.
[32] to approximate in vivo measurements as shown in
Fig. 2. This pulse was generally considered for Rem � 300
as illustrated by Pedersen et al. [33,34]. Zero transverse
velocity gradient and zero cross-flow on the axis of symme-
try r ¼ 0 : v ¼ ou

or ¼ 0
� 	

, a traction-free condition at the out-
let in the lumen and wall, and zero transverse velocity at the
inlet region of the wall. For this study, we assumed that a
single large artery was embedded within the tissue in
order to determine the effects of blood flow with physiolog-
ical waveforms on the temperature distribution in the trea-
ted region. We view this as the first of many steps needed to
model the more complex physiological situation. In the ac-
tual physiological situation, larger arteries are usually near
a corresponding vein. These vessels have different diameters



Fig. 3. Comparison of the axial velocity profiles between the present
results and those of Atabek and Chang [16].
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and flow rates, and their flows are countercurrent. The con-
figuration of the vessels depends on the specific tissue. As
such, the heat exchange between the two blood vessels
should be considered in more complicated models. The goal
of this first model is to demonstrate the effect of pulsatile
flow in hyperthermia treatments. It is also assumed in this
study that the influence of the heating technique (e.g. ultra-
sound, microwave, etc.) is described by setting a fixed tem-
perature for the tumor which is higher than the inlet blood
temperature (i.e. Ttumor > Tblood). Further, the absorption
of the delivered energy to the surrounding tissue around
the vessel is not considered. The physiological properties
for various layers used in our model are based upon appro-
priate pore theory, fiber matrix models, and in vivo and
in vitro experiments are tabulated in Table 1 [35].

3. Heat transfer calculations

The non-dimensional heat flux is expressed in this study
as follows:

q ¼ oh
on

ð12Þ

where n denotes the normal pointing outward from the sur-
face over which the heat flux is to be calculated.

4. Numerical scheme

A finite element formulation based on the Galerkin
method is employed to solve the governing equations sub-
ject to the boundary conditions for the present study. The
objective of the finite element method is to reduce the sys-
tem of governing equations into a discretized set of contin-
uum problem algebraic equations. The finite element
procedure begins with the division of the continuum region
of interest into a number of simply shaped regions called
elements. These elements are assumed to be fixed in the
space. Within each element, the dependent variables veloc-
ity ui, pressure p, and temperature T fields are approxi-
mated by the following equations:

ui ¼ uTUiðtÞ ð13Þ
p ¼ wTPðtÞ ð14Þ
T ¼ #TTðtÞ ð15Þ

where Ui, P and T are column vectors of element nodal
point unknowns and u, w, and # are column vectors of
the interpolation functions for velocity, pressure, and tem-
perature, respectively. Substitution of these approxima-
tions into the field equations for continuity and yields a
set of equations for the residual error as given below:

Continuity: f1ðu;UiÞ ¼ R1 ð16Þ
Momentum: f2ðu;w; #;Ui;P;TÞ ¼ R2 ð17Þ
Energy: f3ðu; h;Ui;TÞ ¼ R3 ð18Þ

where R1, R2, and R3 are the residuals (errors) resulting
from the use of the finite element approximations. The
Galerkin form of the method of weighted residuals seeks
to reduce these errors to zero, in a weighted sense, by mak-
ing the residuals orthogonal to the interpolation functions
of each element. These orthogonality conditions are given
by:

ðf1;uÞ ¼ ðR1;uÞ ¼ 0 ð19Þ
ðf2;wÞ ¼ ðR2;wÞ ¼ 0 ð20Þ
ðf3; #Þ ¼ ðR3; #Þ ¼ 0 ð21Þ

The two-dimensional 9-node quadrilateral element was
used in this study. The velocity and temperature are
approximated using biquadratic interpolation functions.
The highly coupled and non-linear algebraic equations
resulting from the discretization of the governing equations
are solved using the segregated solution algorithm. The
advantage of using this method is that the global system
matrix is decomposed into smaller submatrices and then
solved in a sequential manner. The conjugate residual
scheme is used to solve the symmetric pressure-type equa-
tion systems, while the conjugate gradient squared method
is used for the non-symmetric advection–diffusion-type
equations. A variable grid-size system is implemented in
the present investigation to capture the rapid changes in
the dependent variables. Extensive numerical runs are per-
formed to attain grid-independent results. Solution for
Stokes flow problem was utilized as an initial condition
for solving the above equations until the flow became time
periodic. Thus, regardless of the initial condition, a suffi-
cient number of cycles were performed to overcome the
transition period and achieve convergence for repetitive
solutions at successive cycles. We considered the solution
to be converged when the relative change in variables
between consecutive iterations was less than 10�5.

5. Model validation

The results of the present numerical scheme were vali-
dated against the experimental and analytical results of
Atabek and Chang [16] for laminar, oscillatory flow in



Fig. 4. Comparison of the fully developed velocity profile in the fully
porous channel between the present work and that of Hadim [36] for
various Darcy numbers (Da = K/H2; K is the permeability of the porous
medium and H is the height of the channel).

Fig. 6. Comparison of the normalized heat flux distribution between
physiological and sinusoidal waveforms in the absence of an arterial wall.
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the inlet length of a pipe and both sets of data were in
excellent agreement (Fig. 3). As an additional check on
the accuracy of our work, we compared the fully developed
velocity profile that we obtained in a fully porous channel
with the results of Hadim [36] for various Darcy numbers
as depicted in Fig. 4. Fig. 4 illustrates an excellent agree-
ment between both results.
6. Results and discussion

The behavior of physiological flow through a rigid vessel
is compared against a sinusoidal flow waveform, in the
absence of an arterial wall, in terms of temperature and
heat flux. The results of these comparisons are summarized
in Figs. 5 and 6. Fig. 5 summarizes the results of the com-
parison of the radial temperature profiles along a plane
passing through the middle of a tumor at three points cor-
responding to beginning of systole, peak systolic, and peak
backward (end of systolic) flow conditions for both wave-
Fig. 5. Comparison of the normalized temperature distribution between
physiological and sinusoidal waveforms in the absence of arterial wall
h ¼ T�T inlet bloodð37 �CÞ

T tumor�T inlet bloodð37 �CÞ

� �
.

forms at Reynolds number of 300. This figure illustrates
that the temperature profiles are flattened for more than
80% of the radius and they do not vary within a cycle for
both waveforms. A steep variation in the temperature pro-
files for both waveforms is depicted in a narrow region
close to the blood vessel wall due to the existence of a thin
thermal boundary layer at the wall. Fig. 5 also shows that
the sinusoidal waveform results in lower temperatures than
the physiological waveform at different flow conditions.
For instance, at the end of systole where both flows occur
in reverse direction, the sinusoidal waveform results in
lower temperature than the physiological waveform due
to the fact that the magnitude of flow rate for the former
waveform is larger than for the physiological waveform
(see for instance Fig. 2). The results of variation with time
of the normalized heat flux transferred to blood flow
between both waveforms are depicted in Fig. 6. This figure
illustrates a significant difference between both waveforms.
As such, the sinusoidal waveform exhibits higher heat flux
than the physiological waveform. This is associated with
larger temperature gradients for sinusoidal than for physi-
ological waveforms (see Fig. 5).
ig. 7. Temporal variation of the temperature distribution for various
ow conditions.
F
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Fig. 8. Temporal variation of the normalized heat flux for different
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The effect of vessel size on the radial temperature pro-
files along a plane passing through the middle of the tumor
for various flow conditions using a physiological waveform
is shown in Fig. 7. Large vessels (Re = 300) exhibit large
temperature gradients than smaller vessels (Re = 50). As
such, the dissipation of heat from heated tissues, which is
carried out by convection and conduction, is greater for
large vessels (Fig. 8) due to a strong cooling effect. As a
consequence, the cooling effect of the blood flow in large
vessels results in under dosage of select tumor parts, which
may contribute to the failure of arrest of tumor growth fol-
lowing hyperthermia treatment. This could be the conse-
quence of a part of the surrounding tumor not reaching
the desired treatment temperature.

The aforementioned results ignore the effect of the arte-
rial wall on the temperature distribution. The influence of
the arterial wall on the radial temperature profiles for dif-
ferent flow conditions using a physiological waveform
(Fig. 9) highlights the importance of taking into consider-
ation the presence of the arterial wall when modeling heat
transfer during hyperthermia treatment. When an arterial
wall exists between blood vessel and the surrounding tissue
ð�r ¼ 0:5Þ the interface temperature is lower than without
Fig. 9. Influence of arterial wall on temperature distribution for various
flow conditions.
the arterial wall for various flow conditions (Fig. 9). Fur-
ther, heat transfer through the surrounding tissue is mainly
by conduction as depicted by a linear variation of temper-
ature in the arterial wall.

We also studied the impact of different heating protocols
on the transient temperature distribution in the blood vessel
and the arterial wall. Fig. 10 compares the various heating
schemes obtained with different waveforms. Uniform and
pulsed heating schemes are used in this work. Uniform heat-
ing schemes exhibit higher temperature distributions than
pulsed heating schemes at various flow conditions as
depicted in Fig. 11. To achieve and maintain constant tem-
perature during a uniform heating scheme, heating power
needs to be on long enough to produce the desired rise in
temperature. However, prolonged heating time may induce
areas of overheating (beyond the therapeutic regions) that
could damage normal tissues. Fig. 12 illustrates the effect
of heating duration on the temperature distribution during
a pulsed heating scheme at peak flow conditions. Higher
temperature is depicted for longer periods of heating. When
the heating power is turned off, the actual temperature of
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the heating target is decreased, however, a higher tempera-
ture is observed within the arterial wall due to the transient
effect of heat.

7. Conclusions

A numerical study was conducted to determine the influ-
ence of pulsatile flow and the heating scheme on tempera-
ture distributions in blood vessel and tumor tissues using a
physiological waveform at time-averaged Reynolds num-
ber of 50 and 300 and a sinusoidal flow waveform. The
arterial wall was treated as macroscopically homogeneous
porous media and modeled using the volume-averaged por-
ous media equations. We showed that the presence of large
vessels has a significant effect on temperature distributions
and must be accounted for when planning hyperthermia
treatment. Further, larger vessels are found to exhibit stee-
per temperature gradients than small vessels and conse-
quently larger heat transfer rates. The presence of arterial
wall is found to have a profound effect on the temperature
distribution, heat transfer characteristics, and consequently
on the hyperthermia treatment. Uniform heating scheme
was found to exhibit larger temperature distribution than
for pulsed heating scheme. Therefore, the domain of the
thermal lesion may go beyond the therapeutic region to
the normal tissue.
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